Edge Restraints for Interlocking Concrete Pavements

Introduction

Edge restraints are an essential component of interlocking concrete pavements. Restraints hold the pavers tightly together, enabling consistent interlock of the units across the entire pavement. They prevent spreading of the pavers from horizontal forces from traffic. Edge restraints are designed to remain stationary while receiving impacts during installation, from vehicles and from freeze-thaw cycles.

The following is a discussion of methods of restraining concrete pavers placed on bedding sand and installed on a flexible or rigid base.

Design Considerations

Restraints are required along the perimeter of interlocking concrete pavements or where there is a change in the pavement material. For example, when a laying pattern changes direction, there may be a need for an edge paver to act as a restraint (Figure 1). When a paver shape changes within an area of paver, the edge paver at the end of each pattern can serve as a restraint (Figure 2). Vertical walls of buildings can also provide a suitable restraint.

Some edge restraints require spiking to a flexible aggregate base. The rule of thumb is the base should extend beyond the restraint at least the same dimension as the thickness of the base material. For example, a 6 in. (150 mm) thick base should extend at least 6 in. (150 mm) beyond the spikes in the restraints. This contributes stability to the restraint especially in soils subject to heaving. Soil backfill is never a suitable edge restraint and edge restraints should never be installed on top of the bedding sand.

When installing an edge restraint on an existing rigid concrete base there are two methods typically used: direct fastened, or drilled and anchored. In a direct fastened system an explosive charge is used to drive the fastener into the solid concrete base. When using the drill and anchor method, holes must be drilled through the edge restraint (unless pre-drilled) and into the concrete to a sufficient depth. There are several “anchor” manufacturers and types available:
When using direct fastened or drill and anchor system, it is important to consider several factors. When selecting materials consider the potential for galvanic corrosion created by using different metals. It may also be necessary to use a washer to prevent the fastener or anchor from pulling through the preformed hole in the edge restraint. Consult the fastener/anchor product information to ensure that you are utilizing the right charge and fastener/anchor for the application. Also consider the loads on the edge restraint when determining the spacing between each fastener/anchor. Also ensure that the proper Personal Protective equipment is utilized.

If there is a possibility of sand loss from beneath the pavers or between or under the joints of the edge restraints, geotextile is recommended to prevent its migration. A 12 in. (0.3 m) wide strip can be applied along the base and turned up along the sides of the restraints. Geotextile generally is not required across the entire surface of an aggregate base, nor should it be placed on top of the bedding sand.

Manufactured Edge Restraints

Full depth precast concrete or cut stone edging generally extends the depth of the base material. They can be set on compacted aggregate or concrete backfill (Figure 3).

Partial depth precast concrete edging may be used for residential and light duty commercial applications. These precast units are anchored on a compacted aggregate base with steel spikes. The spikes are typically 3/8 in. (10 mm) diameter. Depending on the design, the top of the concrete edge can be hidden or exposed.

Plastic edging installs quickly and will not rust or rot. Plastic edging should be specifically designed for use with pavers. It can be used with light duty residential and commercial applications, depending on the design. It should be firmly anchored into the compacted aggregate base course with spikes (See Figure 6). The spikes should penetrate well into the aggregate base. Spikes do not need to penetrate the bottom of the base. Consult the manufacturer’s literature for the recommended spacing of the spikes. **Edging for planting beds and flower gardens is not an acceptable restraint for interlocking concrete pavements.**

Aluminum and steel edging should be selected to provide a smooth vertical surface against the pavers. L-shaped edging provides additional stability. Stakes or spikes

<table>
<thead>
<tr>
<th>Types of Edge Restraints</th>
<th>Poured Concrete and Walls</th>
<th>Precast Concrete and Cut Stone</th>
<th>Plastic, Aluminum or Steel</th>
<th>Submerged Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidewalks—no vehicular traffic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Plazas—no vehicular traffic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Residential driveways</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Commercial/Industrial driveways</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Parking lots</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Crosswalks in asphalt or concrete streets</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Streets—all types</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Utility covers</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gas stations</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Industrial flooring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trucking terminals</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

1 not appropriate for areas with freeze thaw cycles
2 only products designed for heavy duty applications

Table 1. Application guide for edge restraints

1. Wedge Anchors,
2. Strike Anchors,
3. Drop-in Anchors,
4. Expansion Anchors.

Steel restraints formed onsite are made of poured in place concrete. Regardless of the material the edge restraint is made of, it should have a smooth vertical surface that will allow the side of the pavers to be in full contact with it.
fastened to the edging should be below the pavers or on the outside of the restraints. Steel should be painted or galvanized so that rust does not stain the pavers. Consult manufacturer’s literature for recommended spacing of the spikes. Spikes to secure aluminum edging should extend well into the base course (Figure 5) or secured to the rigid base. Like plastic edging, spikes used for aluminum edging should never be placed into the soil. Aluminum and steel edgings are manufactured in different thicknesses. The thickest edging is recommended when pavers are subjected to vehicular traffic.

Plastic or aluminum edge restraints can be used for flexible or rigid bases. Steel edge restraints should only be used on rigid bases. Do not use steel on flexible bases.

Timber is not recommended for an edge restraint because it warps and eventually rots.

Elevations should be set accurately for restraints that rest on the base. For example, 2\(\frac{3}{8}\) in. (60 mm) thick pavers with 1 in. (25 mm) of bedding sand would have a base elevation set 3 in. (75 mm) below that of the finish elevation of the pavers. This allows 1/4 in. (6 mm) settlement from compaction and 1/8 in. (3 mm) for minor settling over time. A minimum of 1 in. (25 mm) vertical restraining surface should be in contact with the side of the paver to adequately restrain it. For heavy duty application a greater restraining surface may be warranted.

Restraints Formed Onsite

Poured in place concrete curbs or combination curb and gutters required by municipalities make suitable restraints for pavers. Exposed concrete edges should have a 1/4 in. to 1/8 in. (3 to 10 mm) radius edge to reduce the likelihood of chip-
This type of edge restraint may be used for applications where loading is limited to pedestrian and light residential driveways. Accelerating, braking and turning vehicles may exceed the capacity of this type of edge restraint. Troweled reinforced concrete edge restraints should be constructed directly on the compacted base aggregate at least 4 in. (100 mm) wide and of sufficient thickness to cover at least two-thirds of the side of the edge pavers and bedding sand. Steel reinforcing must be placed in the concrete to increase service life.

Other Design Considerations

Paver sidewalks against curbs—Joints throughout poured in place or precast concrete curbs should allow excess water to drain through joints in them without loss of bedding sand. If there are no joints, weep holes placed at regular intervals will prevent the sand from migrating. A 1 in. (25 mm) diameter hole every 15 ft. (5m) is a recommended spacing. The bottom of the holes should be at the same elevation as the top of the base. They should be covered with filter cloth to prevent loss of bedding sand.
When overlaying existing asphalt or concrete streets with pavers and bedding sand, utility covers are raised and new concrete collars poured around them. When raised, the covers and frames should be inspected for cracks that might allow migration of sand. Cracks should be repaired. Filter cloth should be applied on the base around the concrete collar, turned up against the collar to prevent sand loss.

Catch basins—During the early life of interlocking concrete pavement, there may be a need to drain excess water from the bedding sand. Drain holes may be drilled or cast into the sides of catch basins to facilitate this. The bottom of the holes are at the same elevation as the bottom of the base. Space holes at least 12 in. (0.3 m) apart, and make 1 in. (25 mm) in diameter. The holes should be covered with filter...
cloth to prevent loss of bedding sand. This drainage detail can prevent pumping and loss of bedding sand around the catch basin.

Crosswalks—Pavers in a crosswalk or abutting another pavement can be placed against a concrete beam (Figure 10), or a beam and slab base combination for pavements subject to heavy vehicular traffic (Figure 11). The beam prevents horizontal creep of the pavers due to braking and turning tires. Figure 12 shows a light duty crosswalk appropriate for residential streets with minimal truck traffic. Refer to Tech Spec 19—Crosswalk Construction Using Interlocking Concrete Pavers for further details.

Gutters and drainage channels made with pavers should be embedded in fortified mortar, a bitumen-neoprene bed, or polymer adhesive. The mortar mix should resist degradation from freeze-thaw and salt. Care must be taken in applying the mortar as it can stain the pavers.

Sand is not recommended in joints subject to channelized water flow. The sand will eventually wash out of the paver joints and weaken the pavement. Cement can be dry mixed with joint sand (3% to 4% by weight) to reduce washout in areas subject to channelized drainage or from water draining from roof eaves without gutters. Care must be taken to not let the cement stain the pavers when placing the sand and cement into the joints. A more effective method is use of joint sand stabilization materials. Stabilizers are recommended to reduce risk of washout on steep slopes. See ICPI Tech Spec 5—Cleaning, Sealing and Joint Sand Stabilization of Interlocking Concrete Pavement for more information.

Elevations—When edge restraints are installed before placing the bedding sand and pavers, the restraints are sometimes used to control thickness when screeding the bedding sand. Elevations for screeding should be set from the restraints after their elevations have been verified.

Attention should be given to the elevation of the pavers next to the restraints. Sand-set pavers may require a finish elevation of 1/4 in. (6 mm) above the top of the restraint.
allows for minor settlement of the pavers and surface drainage. Bitumen-set, mortared or adhesive-set pavers should be at least 1/8 in. (3 mm) above adjacent curbs or other edge restraints.

Construction tips—Some restraints allow the pavers and bedding sand to be installed prior to placing the edge materials. The field of pavers is extended past the planned edge location. The pavers are marked with a chalk line, or by using the edge material itself as a large ruler for marking (Figure 14). The marked pavers are then cut with a powered saw or mechanical splitter. The unused ends and excess bedding sand are removed up to the cut pavers, and the edge restraints installed. This technique is particularly useful for creating curved edges.

When the gap between the pavers and the restraint exceeds 3/8 in. (10 mm), the space should be filled with cut pavers. Cut pavers exposed to vehicular traffic should be no smaller than one-third of the whole paver. The paving pattern may require shifting to accommodate cut pavers. Stability of cut edge pavers exposed to tire traffic is
increased when a running course (string or sailor) of whole pavers is placed between the edge restraint or concrete collar and the cut edge pavers. Pavers are cut to fit against this edge course (see Figures 9 and 10). Other shapes include edge pavers that make a straight, flush edge. This detail can reduce incidental chipping of the cut pavers.

In some situations, site fixtures can be installed after the pavers are placed and vibrated and the joints filled with sand. Openings can be saw cut, the edge restraints placed, and the tree grates, bollards, or other fixtures installed.

Figure 10. Concrete beam.

Figure 11. Crosswalk with concrete base.

Figure 12. Crosswalk in existing asphalt pavement.

Figure 13. Marking pavers for saw cutting. The cut pavers are carefully removed and edging is placed against the pavers.